ABSTRACT

The use of dimethylformamide (DMF) as a solvent in vapor annealing processing has been previously shown to improve the device performance of bismuth triiodide (BiI₃) photovoltaics. An extension of this work is to integrate dimethlysulfoxide (DMSO) as a solvent in the vapor annealing processing to further improve BiI₃ thin film morphology. The use of DMSO led to larger grain sizes compared to DMF, however, voids in the film at the expense of larger grains led to a decrease in the J_{SC} of BiI₃ photovoltaics (PVs). A 1:1 mixture of DMF and DMSO was found to improve the J_{SC} of BiI₃ PV devices.

BACKGROUND

BiI₃ has recently gained interest as a nontoxic alternative to lead-based hybrid perovskite photovoltaics. The material has a bandgap of ~1.8 eV making it suitable for use in a single junction solar cell, or as the top layer of a tandem solar cell. Recently, Hamdeh et al. demonstrated a BiI₃ PV device with greater than 1% efficiency utilizing solvent vapor annealing techniques to improve grain size and film morphology to improve charge carrier mobility.

RESULTS & GRAPHICS/CHARTS

- Fig.1 SEM images of BiI₃ thin films processed with DMF and DMSO solvent vapor annealing
- Fig.2 J-V sweeps of BiI₃ PVs processed with DMF and DMSO solvent vapor annealing
- Fig.3 The effect of the percentage of DMSO in the solvent on the J_{SC} and V_{OC} of BiI₃ PV devices

METHODS

1) Spin coat BiI₃ into a glass substrate with TiO₂
2) Place spin coated BiI₃ onto a preheated (160 °C) aluminum block (160 °C) for 30 seconds
3) 10 µL of solvent (DMF and/or DMSO) was placed on the aluminum next to the BiI₃ and both were covered with a petri dish for 10 minutes
4) The petri dish was removed, and the BiI₃ was thermally annealed for 20 minutes

DISCUSSION

Solvent vapor annealing (SVA) has been a widely used strategy to improve film quality, increase grain size, and enhance carrier transport. Solvent vapor annealing with DMSO was found to significantly improve the crystal grain size of BiI₃ thin films compared to using DMF. The increase in crystal grain size was at the expense of voids formed in the thin film resulting in a decrease in BiI₃ PV device performance. Voids in the film lead to poor charge transport in the BiI₃ PV devices, specifically seen as a decrease in J_{SC} shown in Figure 3. A 1:1 mixture of DMF and DMSO results in both an increase in BiI₃ crystal grain size, and in uniform film coverage – alleviating the issue with voids in the thin film increasing charge transport. However this processing condition also led to the lowest V_{OC} of all PV devices tested. Figure 2 shows the current-voltage characteristics of BiI₃ PVs. Low fill factors are a result of decreased shunt resistance which arises from SVA processing.

REFERENCES

ACKNOWLEDGEMENT

A special thanks to Dr. Matthew Panthani, my faculty mentor, Umar Hamdeh and Rainie Nelson, my graduate mentors, Brad Ryan, and the RET fellowship staff.

The material presented here is based upon work supported by the National Science Foundation under Award No. EEC-0813570 and EEC-1406296. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.