Lactic Acid: A Possible hard block

Goal: Oligomerization of Lactic Acid (OLLAs)
- 8 monomers in a linear chain
- Determine: time to complete the physical change
- Constraint: continual production of water

Procedure
- Start: 90% Lactic Acid, 150°C, open system, 2 hours
- Initial pressure change: 100 Torr, 150°C, 2 hours, used needles in a septum to control pressure
- Final pressure change: 30 Torr, 11 hours

Results
- Test: Nuclear Magnetic Resonance (NMR)
 - Chain Length: 12.63
 - Yield: 31%

Analysis/Conclusion
- While it appeared that having a system that pulls consistent vacuum increased the chain length, the trade off was a significant reduction in yield of product. Future research should include design modifications to increase yield while having a desired chain length.

Goal: Polymerization of Lactic Acid (PLLA)
- PLLA chains linked linearly
- Target: minimum molecular weight of 20,000 g/mol
- Variables: temperature, pressure, time
- Determine: time required for high molecular weight without crosslinking

Procedure
- Catalysts: Tin(II) Chloride dihydrate (0.34 wt%), p-Toluenesulfonic acid monohydrate (0.4 wt%)
- Reaction temperature: 180°C
- Pressure: Decrease over 2 hours, 10 Torr for 13 hours
- Dissolve: Tetrahydrofuran (THF)
- Crash: Hexanes
- Filter and dry

Results
- Test: Gel Permeation Chromatography (GPC)
 - Molecular weight: 281654 g/mol
 - Yield: 77% when going from OLLA to PLLA.

Analysis/Conclusion
- According to the GPC tests the molecular weight was higher than any other recorded trials of PLLA. This is ideal because a high molecular weight for the hard block will provide a high molecular weight for the di-block that it will be a part of. The properties of a high molecular weight di-block are desired when replacing the current petroleum products in use.

Bio TPE’s

What are they?
- Bio TPE’s are compounds based on renewable substances that have the goal of replacing current petroleum based polymers solely with “green” monomers.

The Goal of Our Research
- To make a wide variety of biorenewable based TPE’s that replaces current petroleum based elastomers and that could be used in a wide variety of applications, predominantly in tires and asphalt.

Advantages
- Soybean oil price is a less volatile than current petroleum products
- Cheaper than the current products being used
- Is a total replacement of 650,000 tons annually of imported petroleum products

Disadvantages
- Easily crosslinks during polymerization

Current Studies
- Use of polylactic acid as a hard block and attach to soy oil, our current soft block

NMR of trial 6. The integral under the curve at 4.3 represents the terminal CH group and at 5.6 it represents the CH groups in the polymer chain.

GPC of the PLLA. The integral under the curve will give the molecular weight of the polymer.

TPE’s

What are they?
- TPE’s are a combination of hard blocks (i.e. plastic bottles) and a soft block (i.e. rubber bands) that are covalently bonded together to make a polymer that has the properties of both.

Materials made of TPE’s
- Gaskets, Seals, Stoppers, Valves, Bumpers, Casters, Fuel line covers, Shoe soles, Cosmetic cases, Handles, Grips, Knobs, Tires, Asphalt

Their Structure
- High molecular weight
- Diblock copolymer (AB)
- Triblock copolymer (ABA)
- Hard block provides rigidity to restrain soft block from viscous flow

Advantages
- Easy to control polymerization
- Relatively high cost
- Are fossil fuel dependent
- Highly oxygen sensitive

TPE’s

What are they?
- TPE’s are a combination of hard blocks (i.e. plastic bottles) and a soft block (i.e. rubber bands) that are covalently bonded together to make a polymer that has the properties of both.